

OMNInet: A Metropolitan 10Gb/s DWDM Photonic Switched Network Trial

April 13, 2004

Paul Daspit
Advanced Technology Investments Group,
Nortel Networks
pdaspit@nortelnetworks.com

Agenda

- Rationale and Applications
- Network Architecture
- Photonic Switch Implementation
- Control Plane
- Results
- Research Projects

Optical Metro Network Initiative

Partnership

- Nortel Networks
- SBC Communications
- International Corporation for Advanced Internet Research (iCAIR)/Northwestern University
- Experimental metropolitan photonic network field trial
- 10Gb/s Ethernet WAN and LAN service over a wavelength-granularity photonic switched network
- G.ASON, GMPLS Control Plane

Services and Applications

 Enhanced metro photonic services

- O-VPNs
- Dial-a-lambda service
- Router by-pass
- Emerging applications
 - Optical GRIDs
 - Storage on demand
 - Data Mining
 - 3D teleconferencing
 - Visualization
 - Large-Science Apps

3D Virtual Pesign

Network Configuration

Glass-Thru Central Office

Fiber Infrastructure

- SBC metro G.652/SMF-28 single mode fiber
 - "Next pair" selected from installed fiber plant
 - Longest span ~25km
 - 2 to 5 Glass thru per span
- Span losses from 6dB to 13dB (1550nm)
 - 0.5dB/km to 1.2dB/km
- Characterization tests

presentation name

ORL, PMD, CD, OTDR

DWDM Lightpaths

- C-band ITU-T grid 200GHz spacing
- 4 wavelengths installed in the test bed:

1550.92 nm 1552.52 nm

1547.72 nm 1549.32 nm

- Switch supports 8 wavelengths
- Per-wavelength power grooming enabled a mix of high and low performance TRx (FEC, Modulator Driver...)
- 24 possible light paths on each wavelength plane: 96 total
- Longest lightpath ~75 km

Optical Link Impairments

BUSINESS WITHOUT BOUNDARIES

Built Into Transmission Margin

Actively Controlled

- Fiber Losses
- Chromatic dispersion
- Back reflections
- Polarization mode dispersion
- Nonlinear effects

- Electrical crosstalk
- Receiver noise
- Timing jitter
- Electric
- Sensitivity

- Optical power tolerance
- Medulator chirp
- Laser wavelength stability
- Laser relative intensity noise
- Electrical cross-talk
- Extinction ratio
- Back reflection effects
- Timing jitter

- Losses
- Optical amplifier effects on OSNR
- Amplifier Transient
- DWDM filter shape
- Optical crosstalk
- Back reflections
- Polarization-dependent loss

Link Budget

- Link budget is deterministic and computed to work in all 24 network configuration.
- Link loss diversity 6dB to 13dB
- Node loss diversity 6dB to 10dB
- Commercial optical amplifiers
 - pre-amp and/or post-amp configurations
 - 23dB constant-gain
- Minimum OSNR
 - 32dB for LAN interfaces (experimental hardware)
 - 24dB for WAN interfaces (product hardware)
- FEC RS(255, 239) implemented on WAN wavelengths
- Dispersion compensated on longest span (chirpy EML on experimental hardware)

Transmitter ID

- Power monitoring and signal tagging system implemented.
- •Transmitter signal tagged with unique 100kHz 400kHz AM tone.
- Tone sensing using simple photo-detection circuits and DSP-based analyzer.
- Tone power proportional to the optical power.
- Used to sense power and ID both muxed and single wavelength fibers.
- 0.1dB precision, 0.5dB accuracy.

Tone Modulation on data carrier (Exaggerated).

Node Configuration.

Site Installation

Mosaic of node at Site F

Overlay Management
Network hub/switch

OPTera 5200
Optical Amplifier

Photonic Switch Node Controller and DSP

Photonic Switch Node

Passport 8600

10GE WAN Blade 10GE LAN Blades

OPTera 5200 Transponder

Power Inverter

Photonic Switch Architecture NETWORKS

- Wavelength plane architecture can connect any input signal of a specific wavelength to any output without wavelength translation.
- Could switch 8 instances of 8 wavelengths.
- Larger Photonic Switch Node 640 x 640 wavelengths using the same architecture was developed.
- Much more efficient switch architectures are subject of multiple patent applications

G.ASTN Control Plane with O-UNI

OMNInet Control Plane: Protocols & Interfaces

- System configuration/maintenance
 - Consolidated optical link/interface configuration
 - Support on-line static/dynamic link/interface provisioning
 - Module start/stop, memory and resource management
 - Configuration data storage
- Wavelength Routing Protocol (WRP)
 - Optical topology discovery and inventory of physical link resource
 - New path selection/optimization algorithm to support traffic engineering and constraint-based routing
 - O-UNI interworking & control integration
 - Integrated path selection and protection/restoration with WDP
 - O-VPN support

- Wavelength Distribution Protocol (WDP)
 - End-to-End, on-demand light path signaling for I-NNI
 - Bi-directional LSP
 - Optical Connection Admission Control (CAC)
 - Generalized label and wavelength label set
 - 1:1 & 1:N Light path restoration
- Optical Link Management Protocol (OLMP)
 - Control channel monitoring
 - TE link resource management
 - Optical link fault isolation
 - Verify dark fiber connectivity
- O-UNI server
 - Client register/de-register
 - TNA address resolution
 - VPN group auto discovery
 - On-demand light path creation/deletion
 - Light path status enquiry

Results

- Network has been operating since 2001
- Most lightpaths have less than 10 packets lost per million (Measurement limited)
- Stressed lightpath 50 packets lost per million (~10⁻¹⁰ BER)
- More than 1000 lightpath setup/teardown operations
- No optical component failures

Summary

- Technology field trial
 - Photonic switched network
 - Highly managed photonic layer
 - Scalable photonic switch architecture
 - Standards-based control plane
 - For bandwidth intensive applications
- Network continues to operate as infrastructure for content networking research (DARPA DWDM-RAM project)

References to experiments using OMNInet

- Photonic TeraStream demonstration over OMNInet
 - http://www.startap.net/starlight/igrid2002/photonicTeraStream02.html
- A Case for the Global Access to Large Distributed Data Sets using Data Webs Employing Photonic Data Services
 - http://storageconference.org/2003/papers/08_Grossman-Case.pdf
- Distributed Optical Testbed (OMNInet provides one leg of the DOT)
 - http://www.dotresearch.org/about.html
- SABUL experiments over OMNInet
 - http://www.rgrossman.com/pdf/sabul-hpdtp-11-02.pdf
- Northwestern University Information Technology Annual Report 2002 (pp14 & 17 refers)
 - http://www.it.northwestern.edu/AR02/report.pdf
- FAST TCP Experiments (see last 4-5 charts for OMNInet reference)
 - FAST v3

DWDM-RAM

- DARPA funded research project
- Architecture for data-intensive services
 - Manage extremely large sets of distributed data
 - Dynamic on-demand light path and "e-path" provisioning
 - Network resource scheduling
- Demonstrations
 - GGF9 (Chicago, Oct 2003)
 - SC2003 (Phoenix, Nov 2003)
 - Chicago, Jun 2004 (SUPERComm)
- Current research/experiment activity:
 - Multiple sequential service requests
 - File transfer performance measurements and metrics
 - Other transport protocols

End-to-end Transfer time (Not Optimized)

